MATT BRIGIDA
Associate Professor of Finance (SUNY Polytechnic Institute) & Financial Education Advisor, Milken Institute
Kyle (1985) formally models the trading strategy of a trader with private information, who attempts to trade in a way to maximize profits from this information.
To estimate $\lambda$ we use:
$\lambda = \frac{|\Delta(price)|}{volume\ in\ \$}$rearranging this formula affords:
$|\Delta(price)| = \lambda(volume\ in\ \$)$We can thus estimate $\lambda$ via the following regression equation:
$|\Delta(price)_t| = \alpha + \lambda(volume\ in\ \$)_t + e_t$Brigida and Pratt (2017) investigated the effect of a fake news announcement of a takeover bid for Twitter (TWTR) on Twitter's stock. In this analysis they used a Kalman Filtered estimate of Kyle's Lambda throughout the event.
library(highcharter)
## lambda estimated via kalman filter
depth <- as.xts(0.01 / lambda, order.by = index(twtr.s.d)[-1])
## generates the chart
hc <- highchart(type = "stock") %>%
hc_add_series(name = "Market_Depth", data = depth) %>%
hc_add_theme(hc_theme_darkunica()) %>%
hc_yAxis(title = list("Market Depth ($)")) %>%
hc_title(text = list("TWTR Market Depth ($)")) %>%
hc_exporting(enabled = TRUE)
hc
You will use the TWTR price data to do the following:
You can download the data from here in CSV format, and from here as an RDS file (if you want to use R). The data looks like:
library(xts)
data <- readRDS("twtr_data.rds")
head(data)
## TWTR.Open TWTR.High TWTR.Low TWTR.Close TWTR.Volume
## 2015-07-14 09:30:00 35.78 35.94 35.77 35.86 1703
## 2015-07-14 09:30:30 35.85 35.89 35.85 35.86 141
## 2015-07-14 09:31:00 35.86 35.92 35.85 35.85 266
## 2015-07-14 09:31:30 35.86 35.86 35.83 35.85 160
## 2015-07-14 09:32:00 35.85 35.88 35.83 35.86 124
## 2015-07-14 09:32:30 35.86 35.86 35.84 35.84 129
## TWTR.WAP TWTR.hasGaps TWTR.Count
## 2015-07-14 09:30:00 35.790 0 139
## 2015-07-14 09:30:30 35.867 0 21
## 2015-07-14 09:31:00 35.866 0 94
## 2015-07-14 09:31:30 35.851 0 54
## 2015-07-14 09:32:00 35.854 0 58
## 2015-07-14 09:32:30 35.847 0 35
As aside, Brigida and Pratt (2017) mainly used option data to look at implied volatility around the fake news anouncement.