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This analysis determines the effect of diversification on portfolios of re-
tail electricity price and volume swaps. These contracts are used by munic-
ipalities to provide fixed costs to customers and enables greater renewable
generation. Power marketing firms often pay the floating generation cost.
We find very limited benefits to diversification for power marketing firms
providing these swaps within the NEPOOL region. This evidence supports
a long/short swap strategy, or diversification across wide geographic regions.
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1 Introduction

This analysis highlights the role of power marketing firms, which can enter
into contracts across various electricity markets, in reducing risk for con-
sumers. They do so by offering fixed for floating electricity swaps. These
swaps allow retail customers to pay a fixed certain price for their uncertain
electricity demand. This reduction in risk is important to increase the pro-
portion of intermittent renewable energy used in deregulated power markets.
Thus, our analysis contributes to the literature on methods to provide stable
electricity prices to end consumers, thereby facilitating economic growth.

Valuation of these swaps is an active area of research. Difficulties arise
from both the unique behavior of electricity prices as well as the uncertain
volume of the contract. A step toward such valuation is Nazar et al. 2018
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which created a method to simultaneously forecast both power and load. Our
present analysis adds to the literature not by valuing individual contracts,
but by determining how a portfolio of these contracts behaves. Is there a
substantial diversification benefit, and over how wide of a geographic region
must a power marketing firm diversify?

Anderson, Hu, and Winchester 2007 discuss the important role forward
contract play in electricity markets. Benth and Koekebakker 2008 use a
Heath-Jarrow-Morton approach to model fixed-for-floating electricity price
swaps to some success. Note, in this analysis the size of the swap (megawatt
hours) is fixed. Kemper, Schmeck, and Kh.Balci 2022 price derivatives based
on electricity swaps in an arbitrage-free framework by introducing a market
price for the delivery period of the electricity swap.

Frestad, Benth, and Koekebakker 2010 find evidence of substantial risk-
premia in short-dates swaps on Nordic exchanges. They also find evidence
that daily swap returns exhibit significant kurtosis, but little skewness. Sim-
ilarly, Blanco, Peña, and Rodriguez 2018 find evidence that electricity swap
Value-at-Risk (VaR) estimates underestimate tail risk if a Normal distribu-
tion is used. Peña, Rodríguez, and Mayoral 2020 determine that, at least
with respect to electricity futures, decent VaR estimates can be made with
a GARCH(1,1) model with Student-t errors.

Note, our present analysis contributes to risk-management and mitigation
by investigating the effect of diversification in electricity swaps. In addition
to lessening risk, portfolios tend to have return distributions that are closer to
the Normal distribution when compared to single asset return distributions.

There is a substantial amount of research on how to incorporate inter-
mittent renewable energy into deregulated power markets. Lai et al. 2021
investigate a portfolio hedging strategy for natural gas generators in the
presence of intermittent renewable energy. Ihlemann et al. 2022 highlights
the benefits of balancing power capacity markets across borders—thereby
diversifying across a larger region. Zeynali et al. 2021 investigate the power
price effect of coordinating wind generation with electric vehicle charging.
Successful integration of renewable energy has a positive effect on regional
economic growth. González and Alonso 2021 discuss the effect of power
market integration on industrial power prices.

The remainder of this paper is organized as follows. Section 2 describes
the swap contract, and section 3 covers our dataset and empirical methods.
Section 4 presents results and section 5 concludes.
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2 Swap Description

The contract is a fixed for floating power swap, and is based on contracts
presently being traded by power marketing firms and municipalities. The
contract has the following characteristics:

• Revenue per MWh supplied is fixed.

• Cost of supplying power is floating.

• Amount of power supplied is floating.

• Customers can migrate onto and away from the load that must be
served.

We can write the payoff on the contract as:

Profit = (P −X)TMWh

where P is the power price in $/MWh, X is the price for which we must
deliver power in $/MWh, and T is the amount of power we must deliver in
MWh. Further:

TMWh = f(E, I)

where E and I denote weather and migration respectively. Migration
itself is a function of the power price. If the retail power price increases, then
consumers migrate to the fixed contract, and they leave the fixed contract
as the price decreases.

The Effect of a Load Changes on Profit

A load increase will increase the cost of power reducing profit per MWh. In
addition there is lower profit (or a loss) on a larger amount of MWh. Thus,
load increases tend to lower profit.

Alternatively, a decrease in the load will lower prices and increase profit
per MWh. However this increased profit will be earned on fewer MWh, so
ultimately, it is unclear whether total contract profit will increase or decrease.

Thus the contract tends to earn the most profit when load and power
prices do not deviate much from those specified in the contract. The contract
then has an analogue in the butterfly, and short straddle option spreads. In
this analysis, we set the fixed contract price as the average price of power in
the year prior and discount it by a 15% cost of capital.
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3 Data and Methods

Our analysis uses monthly Real-Time Locational Marginal Prices (RT-LMP)
ranging from January 2016 to February 2022, for 74 total months. Our RT-
LMP cover each region in the area overseen by the New England Indepen-
dent System Operator (ISO-NE). These regions are: Maine, Connecticut,
Vermont, New Hampshire, Rhode Island, South-East Massachusetts, North-
East Massachusetts, and West-Central Massachusetts. Data are gathered
directly from the ISO New England’s ISO Express data service1. Summary
statistics of the swap contract changes calculated using each region’s RT-
LMP are in table 1 below.

Table 1: Summary Statistics: Real-time monthly LMP changes by region in
$/MWh. January 2016 through January 2022 inclusive.

ME NH VT CT RI SEMA WCMA NEMA
count 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00
mean 1.73 3.28 1.32 3.42 3.50 3.52 3.27 3.32
std 396.04 84.78 59.92 90.14 73.97 80.76 103.25 129.29
min -2354.74 -207.97 -195.96 -289.89 -231.78 -202.51 -330.64 -479.08
25% -33.82 -38.49 -29.90 -27.09 -42.67 -40.24 -35.88 -45.76
50% 1.17 0.11 -1.42 0.64 0.86 -0.88 0.44 5.79
75% 21.52 24.86 30.71 38.02 43.52 36.81 44.46 39.89
max 2322.53 207.61 187.38 295.33 254.35 298.51 337.05 606.29

Table 2: Correlation Matrix: Real-time monthly LMP changes.
ME NH VT CT RI SEMA WCMA NEMA

ME 1.00 0.09 0.05 0.02 0.05 0.06 0.05 0.03
NH 0.09 1.00 0.72 0.62 0.57 0.50 0.55 0.49
VT 0.05 0.72 1.00 0.41 0.45 0.35 0.37 0.41
CT 0.02 0.62 0.41 1.00 0.78 0.61 0.92 0.85
RI 0.05 0.57 0.45 0.78 1.00 0.70 0.77 0.69
SEMA 0.06 0.50 0.35 0.61 0.70 1.00 0.65 0.58
WCMA 0.05 0.55 0.37 0.92 0.77 0.65 1.00 0.90
NEMA 0.03 0.49 0.41 0.85 0.69 0.58 0.90 1.00

The correlation coefficients between ISO-NE locations ranges from 0.029
between Connecticut and Maine, to 0.86 between northeast and west-central

1https://www.iso-ne.com/markets-operations/iso-express
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Massachusetts. Generally, Maine has the smallest correlation with the rest
of New England. This makes Maine attractive for diversification, however
Maine also has the highest volatility.

Results from Jarque-Bera tests for Normality are in table 3 below. Over
each region we reject the null, which is evidence that the price difference
series do not have skewness and kurtosis consistent with the Normal dis-
tribution. Notably, however, electricity returns (over periods with positive
prices) also generally fail Normality tests, as do individual stock returns.

Table 3: Jarque-Bera Test for Normality Results
ME NH VT CT RI SEMA WCMA NEMA

JB Stat 2972.29 4.67 12.84 28.05 9.19 17.0 36.42 203.31
p-value 0.00 0.10 0.00 0.00 0.01 0.0 0.00 0.00

4 Results

4.1 Single Zone Results

Below we provide results for each zone, and long-only and long-short port-
folios across all zones. We use the Sharpe Ratio as a measure of portfolio
performance.

Table 4: Contract percentage profit, individual zone data.
Zone Mean Return Standard Deviation Sharpe Ratio
Maine 1.110617 1.088223 1.020579
New Hampshire 0.715642 0.154146 4.642614
Vermont 0.761109 0.250510 3.038240
Connecticut 0.695537 0.225178 3.088828
Rhode Island 0.689433 0.174560 3.949548
SE Massachusetts 0.763188 0.255090 2.991837
WC Massachusetts 0.712360 0.168011 4.239960
NE Massachusetts 0.753476 0.375916 2.004372
Average 0.77517025 0.33645425 3.1219973

The Sharpe Ratio for Maine is the lowest at 1.02. The Sharpe Ratio for
New Hampshire is the highest at 4.64. These Sharpe Ratios are relatively
high and reflect our construction of the contract—Sharpe Ratios would likely
be lower if we did not reset the contract costs after each year.
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4.2 Portfolio Results

We construct both long-only and long-short portfolios. Typically power mar-
keting firms take the long side of these contracts, and municipalities and
other sources of load take the short side. That said, through trading with
other power marketing firms, it is possible for a firm to take a short position.
It may be realistic, however, to limit the amount which can be sold.

We calculate mean-variance optimal portfolios by maximizing the Sharpe
ratio (using Martin 2021). This method assumes quadratic utility or asset
returns are Normally distributed (or a member of the elliptical family of
distributions). That is, we assume investors are indifferent to the third, and
higher moments of the return distribution. This assumption is common when
dealing with stock portfolios, despite evidence that stock returns may exhibit
significant skewness and kurtosis. The assumption is likewise troublesome
when applied to electricity returns and the returns on our swap contracts.

4.2.1 All Zone Portfolio

Below are results for long-only and long-short portfolios. A long-only portfo-
lio is more consistent with the role of a power-marketing firm, however these
firms are able to enter the short side of the swap contract (buying rather
than supplying power).

1. No Shorting

Our long-only portfolio has a Sharpe ratio of 4.58, which is slightly
less that the maximum Sharpe ratio across individual regions (New
Hampshire has a Sharpe ratio of 4.64). It is, however, greater than
the average Sharpe Ratio over all regions (3.12). Somewhat counter
intuitively, mean-variance optimization allocated most of the portfolio
to west-central Massachusetts and Rhode Island, with a 0% weight
to the region with the highest Sharpe Ratio (New Hampshire). Again
these are high Sharpe ratios and should only be compared to each other
given the assumptions made in the contract construction.

Table 5: All zone portfolio, long-only portfolio.
Expected Return 73.94%
Standard Deviation 15.70%
Sharpe-Ratio 4.58

(a) Long-only Weights Constrained to 20%
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Table 6: Region weights in long-only portfolio.
Region Weight
Maine 8.09%
New Hampshire 0.0%
Vermont 0.0%
Connecticut 0.0%
Rhode Island 22.21%
SE Massachusetts 0.0%
West-Central Massachusetts 69.70%
NE Massachusetts 0.0%
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Figure 1: Long only portfolio.
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In the above long-only portfolio 5 regions have 0% weights, and
approximately 70% of the portfolio is in West-Central Massachusetts.
Since many power marketing firms have internal rules regarding
maximum exposure to any given region or contract, it makes sense
to additionally restrict the weight of each region. In the table be-
low we provide a long-only optimal portfolio with the maximum
weight in any region constrained to 20%.
Constraining the weights to a maximum of 20% lowers the Sharpe
Ratio to 3.95 from 4.58 in the long-only portfolio. The reduction
in the Sharpe Ratio is due to an increase in the portfolio standard
deviation from 15.70% to 18.47%. The expected return increased
with the additional constraints. With the additional 20% con-
straint, only two regions (Vermont and NE Massachusetts) receive
a 0% weight.

Table 7: All zone portfolio, long-only portfolio.
Expected Return 74.99%
Standard Deviation 18.47%
Sharpe-Ratio 3.95

Table 8: Region weights in long-only portfolio.
Region Weight
Maine 8.35%
New Hampshire 20.00%
Vermont 0.00%
Connecticut 11.65%
Rhode Island 20.00%
SE Massachusetts 20.00%
West-Central Massachusetts 20.00%
NE Massachusetts 0.00%

2. Shorting Allowed

In the two portfolios below we allow the power marketing firm to take
the short side of the contract. Given the generally high correlations be-
tween the contract returns across regions, allowing shorting will allow
the portfolio standard deviation to be greatly reduced without lowering
the mean return. That said, traditionally power marketing firms are
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on the long side of these types of contracts, because they are generally
an arm of a power producer. The short side is typically a municipality
or other load source. Therefore, the ability to take the short side of
these contracts may be limited.

(a) Weights Constrained to 100%
Allowing up to 100% short positions results in a very low port-
folio standard deviation and high Sharpe Ratio at 1.75% and
34.39 respectively. The optimization took advantage of the high
positive correlations and allocated negative weights of approxi-
mately -82%, -92%, and -100% to New Hampshire, south-east
Massachusetts, and north-east Massachusetts respectively. This
is evidence that geographically-constrained power marketing firms
should consider shorting these swap contracts to the extent that
it is allowed by the market and corporate policy.

Table 9: All zone portfolio, full-shorting-allowed portfolio.
Expected Return 62.30%
Standard Deviation 1.75%
Sharpe-Ratio 34.39

Table 10: Region weights in shorting-allowed (constraint at 100%) portfolio.
Region Weight
Maine 1.39%
New Hampshire -82.03%
Vermont 72.57%
Connecticut 100.00%
Rhode Island 100.00%
SE Massachusetts -91.93%
West-Central Massachusetts 100.00%
NE Massachusetts -100.00%

(b) Weights Constrained to 20%
It is more reasonable for a power marketing firm to constrain
the firm’s exposure to a given contract and market. The portfo-
lio below constrains the weight in each region to between -20%
and 20%. When doing so the portfolio’s Sharpe Ratio of 4.43 is
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Figure 2: Full-shorting-allowed portfolio.

slightly lower than the Sharpe Ratio of the long-only (but other-
wise unconstrained) portfolio (4.58). The only region shorted in
the portfolio is north-east Massachusetts, which had the lowest
individual region Sharpe Ratio after Maine.

Table 11: All zone portfolio, shorting-allowed (weights constrained to 20%)
portfolio.

Expected Return 73.96%
Standard Deviation 16.22%
Sharpe-Ratio 4.43

5 Conclusion

In this analysis we have calculated returns on price and volume swap con-
tracts which are often provided by power marketing firms to municipalities.
While these contracts may have a high Sharpe Ratio individually, we have
found evidence for the limited diversification potential on the New England
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Table 12: Region weights in shorting-allowed (constraint at 20%) portfolio.
Region Weight
Maine 6.52%
New Hampshire 20.00%
Vermont 13.48%
Connecticut 20.00%
Rhode Island 20.00%
SE Massachusetts 20.00%
West-Central Massachusetts 20.00%
NE Massachusetts -20.00%

ISO for these swaps. For a power marketing firm to limit risk within the ISO,
they would have to construct long-short power swap portfolios. This essen-
tially means risk can only be allocated among similar firms, and therefore
does not reduce the risk held by the overall market participants.

This highlights the need for power marketing firms to be able to diversify
across geographical markets. This is often limited by differing power mar-
ket structure and corporate policy. Therefore, we find support for measures
which allow power marketing firms to operate with greater geographic diver-
sity. However, a remaining question for future analyses is the extent to which
greater geographic diversification can reduce risk. Specifically, measuring the
effect of adding contracts on the ERCOT (Texas) or CAISO (California) op-
erated electricity grids is a sensible area of future research.
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